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Hydrothermal reaction of 1,2,4-triazole with CdCl2 � 2.5H2O generated a 3-D metal-organic
framework, {[Cd3Cl2(Trz)4] �H2O}n (1) (Trz¼ 1,2,4-triazole), which was characterized by
elemental analysis, FT-IR, X-ray powder diffraction, X-ray single-crystal diffraction,
TG/DTA, and photoluminescence measurements. Compound 1 crystallizes in the orthorhom-
bic system, space group Pnma, a¼ 16.906(3) Å, b¼ 8.3151(17) Å, c¼ 13.080(3) Å,
V¼ 1838.6(6) Å3, Z¼ 4. Cd(1) is coordinated by four nitrogen atoms and one chloride to
form a distorted trigonal-bipyramidal geometry. Cd(2) is an octahedron defined by four
triazole nitrogen atoms and two chlorides. Two Cd(2) and one Cd(1) are linked by �3-Cl(1) to
give a [Cd3Cl] cluster, which is connected by �2-Cl(2) to generate a 1-D inorganic chain. The 1-
D inorganic chains are extended by �3-Trz to form a 2-D hybrid layer in the b, c-plane, which is
ultimately linked by residual triazole ligands to give a 3-D framework. The [Cd3Cl] clusters and
the Trz ligands can be regarded as 9- and 3-connected nodes, which lead to an unusual (3,9)-
connected net with Schläfli symbol of (423 � 613)(43). The solid 1 exhibits high thermal stability
and shows strong blue fluorescence emission at 410 nm in the solid state at ambient
temperature.

Keywords: Hydrothermal reaction; 1,2,4-Triazole; Crystal structure; Fluorescence; Topology

1. Introduction

In the past decade, metal-organic frameworks (MOFs) have been of interest owing to
various architectures and exploitable applications as functional materials [1–5]. The
diversity in framework structures of MOFs greatly depends on the selection of the metal
centers and ligands, as well as on the reaction pathways. Many MOFs have been
constructed from metal centers with well-defined coordination geometries and
multifunctional organic ligands containing N- and/or O-donors [6–10]. Among the
numerous ligands employed, 1,2,4-triazole and derivatives show particularly versatile
coordination modes to bridge metal ions with potential �1,2, �2,4 and �1,2,4 bridging
modes that unite the coordination of both pyrazole and imidazole and exhibit an ability
to afford polynuclear clusters and 1-D to 3-D MOFs [11–15]. For example, Su et al. [16]
synthesized an exceptionably stable coordination polymer displaying open-ended,
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hollow, and nanotubular channels. Chen et al. [17–20] performed systematic work in
this field and reported the solvothermal synthesis of a series of Cu(I) 1,2,4-triazolates
involving in situ generation of triazole by cycloaddition of nitrile and ammonia.

The topological approach has proven to be an important and essential aspect in
structural simplification and subsequent systematization of MOFs. The core idea of the
work is to reduce multidimensional frameworks to simple node-and-linker reference
nets [21–23]. A variety of uninodal networks have been reported [24–27]. However,
higher-dimensional nets with mixed connectivity such as (3,6)-, (3,7)-, (4,8)-, (3,9)-,
(3,10)-, and (3,12)-connected frameworks are difficult to achieve because of greater
geometric limitations [28–32]. As a result, further investigation on the self-assembly of
MOFs with mixed nodes will not only help facilitate the construction of MOFs with
fascinating topologies but also enrich the growing database of coordination polymers.

As part of our ongoing research that deals with coordination chemistry of 1,2,4-
triazoles, we have been focusing on discovering new high-connected MOFs with metal-
1,2,4 triazolate polynuclear clusters as connectors. Using 1,2,4-triazole and anionic
bridging ligands as coligands, a series of 6- to 10-connected 3-D MOFs based on
binuclear, linear or cyclic trinuclear, tetranuclear, linear pentanuclear, cyclic hexa-
nuclear, heptanuclear, and sixteen-nuclear metal–1,2,4-triazolate clusters have been
obtained [33–36]. Detailed structural comparisons of the complexes indicate that the
nuclearity of the metal–triazolate clusters and the bulk of the second bridging ligands
are two key factors that influence the connectivity of the resultant 3-D MOFs. We now
report a (3,9)-connected MOF based on [Cd3Cl] trinuclear building block,
{[Cd3Cl2(Trz)4] �H2O}n (1) (Trz¼ 1,2,4-triazole), which has been characterized by
X-ray single-crystal diffraction, FT-IR spectrum, elemental analysis, X-ray powder
diffraction (XRPD), TGA, and photoluminescence measurements.

2. Experimental

2.1. Materials and physical measurements

The reagents and solvents were commercially available and used without purification.
The Fourier-transform infrared spectra (KBr pellets) were recorded using a Nicolet
Avatar 360 FT-IR Spectrometer from 4000 to 400 cm�1. C, H, and N elemental analyses
were performed using an Elementar Vario EL III elemental analyzer. Thermal stability
studies were carried out using aNETSCHZSTA�449C thermoanalyzer under a nitrogen
atmosphere (40–1000�C range) at a heating rate of 5�Cmin�1. The fluorescence spectra
were measured with a Cary Eclipse fluorescence spectrophotometer at room temperature
using powdered crystal samples. XRPD data were collected on a Bruker D8 Advance
powder diffractometer with Cu-Ka radiation (40 kV, 40mA). The simulated powder
pattern was calculated using single-crystal X-ray diffraction data and processed by the
free Mercury 2.3 program provided by the Cambridge Crystallographic Data Centre.

2.2. Synthesis of {[Cd3Cl2(Trz)4] .H2O}n

A mixture containing CdCl2 � 2.5H2O (0.228 g, 1.0mmol), 1,2,4-triazole (0.069 g,
1.0mmol), and NaOH (0.04 g, 1.0mmol) in 10mL H2O was heated at 180�C for 5
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days under autogenous pressure, followed by cooling slowly (5�Ch�1) to room

temperature. Pure colorless block crystals were collected by filtration, washed with

water and ethanol, and dried in air. Yield: 0.13 g (ca 56% based on Cd). Anal. Calcd for

C8H10N12OCl2Cd3 (%): C, 13.76; H, 1.44; N, 24.07. Found (%): C, 13.58; H, 1.49; N,

25.03. FT-IR (solid KBr pellet/cm�1): 3457(w), 2973(w), 2926(w), 1606(w), 1568(s),

1494(w), 1445(m), 1381(w), 1296(m), 1206(m), 1131(w), 1035(w), 985(w), 873(w),

752(s), 618(w).

2.3. Crystal structure determination

A single-crystal of 1 with dimensions 0.53� 0.42� 0.28mm3 was carefully

selected under an optical microscope and glued to thin glass fibers. Crystallographic

data for the compound were collected with a Siemens Smart CCD diffractometer with

graphite-monochromated Mo-Ka radiation (�¼ 0.71079 Å) at T^ 293(2)K.

Absorption corrections were made using SADABS [37]. The structure was solved

using the direct method and refined by full-matrix least-squares on F2 using

the SHELXL-97 program package [38]. All non-hydrogen atoms were refined

anistropically. Positions of the hydrogen atoms attached to carbons were fixed

at their ideal positions. Crystal data as well as details of data collection and

refinement for 1 are summarized in table 1. Selected bond lengths and angles are listed

in table 2.

Table 1. Crystal data and structure refinement for 1.

Empirical formula C8H10N12OCd3Cl2
Formula weight 698.38
Temperature (K) 293(2)
Crystal system Orthorhombic
Space group Pnma
Unit cell dimensions (Å, �)
a 16.906(3)
b 8.3151(17)
c 13.080(3)
� 90
� 90
� 90
Volume (Å3), Z 1838.6(6), 4
Calculated density (g cm�3) 2.523
Absorption coefficient (mm�1) 3.755
F(000) 1312
� range for data collection (�) 3.11–25.34
Reflections collected/unique 16,977/1807
R(int) 0.0276
Parameters 125
Goodness-of-fit on F2 1.024
R1

a, wR2 [I4 2�(I)] 0.0235, 0.0609
R1, wR2 (all data) 0.0242, 0.0613
Largest difference peak and hole (e Å�3) 0.907 and �0.521

aR1¼
P

(jFoj � jFcj)/
P
jFoj; wR2¼ [

P
w(F 2

o �F 2
c )

2/
P

w(F 2
o )

2]0.5.
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3. Results and discussion

3.1. Description of crystal structure

Single-crystal structure analysis shows that 1 crystallizes in the orthorhombic space
group Pnma and can be described as an unprecedented (3,9)-connected framework
based on [Cd3Cl] trinuclear clusters and �3-Trz ligands. The asymmetric unit of 1

consists of two crystallographically unique Cd2þ ions, three independent trz
ligands (Trz-I, C(1)N(2)C(1B)N(4C)N(4D); Trz-II, C(3)N(1A)C(4)N(5)N(3); Trz-III,
C(2)N(6E)C(2B)N(7B)N(7)), two chlorides, and one crystalline H2O (figure 1).
The independent Cd(1) is five-coordinate to four nitrogen atoms from triazoles and
one chloride to construct a distorted trigonal-bipyramidal geometry. Cd(2) connects
four triazole nitrogen atoms and two chlorides to give an octahedral [CdCl2N4]
geometry. The Cd–N and Cd–Cl bond lengths are 2.226(4)–2.353(3) Å and

Table 2. Selected bond lengths (Å) and angles (�) for 1.

Cd(1)–N(2) 2.226(4) Cd(2)–N(3) 2.309(3)
Cd(1)–N(5) 2.253(3) Cd(2)–N(7) 2.340(3)
Cd(1)–N(6) 2.348(4) Cd(2)–N(4) 2.353(3)
Cd(1)–Cl(1) 2.6631(13) Cd(2)–Cl(1) 2.7228(9)
Cd(2)–N(1) 2.302(3) Cd(2)–Cl(2) 2.6472(9)

N(2)–Cd(1)–N(5) 133.23(9) N(1)–Cd(2)–Cl(2) 92.94(9)
N(5)#1–Cd(1)–N(5) 93.49(18) N(3)–Cd(2)–Cl(2) 91.60(8)
N(2)–Cd(1)–N(6) 85.29(17) N(7)–Cd(2)–Cl(2) 88.29(8)
N(5)–Cd(1)–N(6) 92.02(11) N(4)–Cd(2)–Cl(2) 93.00(8)
N(2)–Cd(1)–Cl(1) 87.73(12) N(1)–Cd(2)–Cl(1) 87.67(8)
N(5)–Cd(1)–Cl(1) 92.76(8) N(3)–Cd(2)–Cl(1) 87.80(8)
N(6)–Cd(1)–Cl(1) 173.02(12) N(7)–Cd(2)–Cl(1) 92.44(8)
N(1)–Cd(2)–N(3) 175.40(11) N(4)–Cd(2)–Cl(1) 86.28(8)
N(1)–Cd(2)–N(7) 90.60(11) Cl(2)–Cd(2)–Cl(1) 179.05(3)
N(3)–Cd(2)–N(7) 88.77(11) Cd(1)–Cl(1)–Cd(2) 101.48(3)
N(1)–Cd(2)–N(4) 88.52(11) Cd(2)#1–Cl(1)–Cd(2) 100.73(4)
N(3)–Cd(2)–N(4) 92.00(11) Cd(2)#2–Cl(2)–Cd(2) 102.24(5)
N(7)–Cd(2)–N(4) 178.48(11)

Symmetry transformations used to generate equivalent atoms: #1: x, �yþ 1/2, z; #2: x, �y� 1/2, z.

Figure 1. View of the coordination environments in 1 (symmetry codes: (A) 0.5� x, �y, �0.5þ z; (B) x,
0.5� y, z; (C) �x, 0.5þ y, 2� z; (D) �x, �y, 2� z; (E) 0.5þ x, 0.5� y, 1.5� z).
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2.6472(9)–2.7228(9) Å, respectively. The corresponding bond angles are 85.29(17)–
179.05(3)�. One Cd(1) and two Cd(2) are linked by �3-Cl(1) to form a [Cd3Cl] trinuclear
cluster, which is further connected by one �2-Cl(2) generating a 1-D [Cd3Cl2]n inorganic
chain along the b-axis. Adjacent Cd–Cl inorganic chains are bridged by �3-Trz-II to
form a 2-D layer in the b, c-plane (figure 2a), which is further extended by Trz-I and
Trz-III to generate a 3-D metal-organic hybrid framework (figure 2b). In our analysis of
the 3-D framework, we can define the [Cd3Cl] trinuclear cluster as a node. Each [Cd3Cl]
cluster links three Trz-I ligands and six adjacent trinuclear motifs through four Trz-II
and two Trz-III (figure 3a). Thus, the [Cd3Cl] clusters and Trz-I ligands can be regarded
as 9- and 3-conneted nodes, respectively (figure 3b). These two non-equivalent nodes

Figure 2. (a) The 2-D layer generated by 1-D Cd–Cl chain in the b, c-plane. (b) The 3-D framework of 1
viewed along the c-axis.
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lead to an unusual (3,9)-connected network topology (figure 3c). The node-node
distances are 4.31, 4.35, 8.38, and 10.39 Å. The short Schläfli symbol for the net is
(423 � 613)(43), which represents the 9-connected [Cd3Cl] node and 3-connected Trz-I
node, respectively. The long Schläfli symbols are 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 �
4 � 4 � 4 � 42 � 42 � 42 � 42 � 42 � 43 � 43 � 62 � 63 � 63 � 63 � 67 � 67 � 68 � 68 � 68 � 68 � 68 � 68 � 68 for trinuc-
lear cluster and 42 � 43 � 43 for Trz-I. Alternatively, Yaghi et al. [39] recently
demonstrated a concept of infinite rod-like secondary building units in the design
and synthesis of MOFs. According to the concept, the 3-D net of 1 exhibits a rather
simple topological framework based on 1-D rod-shaped [Cd3Cl2]n building blocks. Each
1-D rod shaped building block links five adjacent rods through three independent
triazole ligands to generate the 3-D rod-packing structure of 1 (figure 3d). The example
demonstrates again the usefulness of the concept of rod packing in simplifying the
metal-organic coordination frameworks.

3.2. XRPD, TGA, and photoluminescence properties

Compound 1 was characterized via XRPD at room temperature (figure 4a). The XRPD
pattern measured for the sample was in good agreement with the XRPD pattern

Figure 3. (a) The linkage of each [Cd3Cl] trinuclear unit with three Trz-I (highlighted by the gray plane) and
six adjacent trinuclear motifs. (b) The 9-connected node. (c) The schematic presentation of the (3,9)-connected
topological net. (d) The rod-packing framework of 1.
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simulated from the single-crystal X-ray data using Mercury 1.4. On the basis of the
XRPD results, it can be established that the single-crystal selected is a good
representative of the bulk compound.

The thermal stability of 1 was investigated on crystalline samples under N2 from 40�C
to 1000�C using the TG/DTA analyses. The weight loss curve of 1 showed that it was
stable to ca 380�C (figure 4b). The slight weight loss before 380�C is due to loss of one
crystallization water (exptl: 2.2%, Calcd: 2.6%). In the range 380�710�C, two
continuous mild weight losses are due to decomposition of four triazoles and two Cl
(exptl: 50.9%, Calcd: 49.1%). In the temperature range 720–900�C, a sharp weight loss
process is ascribed to the sublimation of formed Cd metal (exptl: 46.9%, Calcd: 48.3%).

We also studied the photoluminescence of 1 at room temperature. Upon excitation at
301 nm, an intense band in the emission spectrum was observed at 410 nm (figure 4c).
To understand more thoroughly the nature of this emission band, the luminescence of
Trz was also investigated. The ligand is nearly non-fluorescent from 400 to 800 nm for
excitation wavelengths between 250 and 450 nm. However, the highest occupied
molecular orbitals (HOMOs) in 1 are presumably associated with the 	-bonding
orbitals from the aromatic 1,2,4-triazole rings, whereas the lower unoccupied molecular
orbitals (LUMOs) are associated mainly with Cd–Cl 
*-antibonding orbitals, being
localized more on the metal centers. Thus, the origin of the weak emission can be
attributed to ligand-to-metal charge transfer (LMCT) [40].

Figure 4. (a) XRPD patterns for 1: top, calculated from single-crystal X-ray data; bottom, experimental
data. (b) TG/DTA curves of 1. (c) Solid-state emission spectrum of 1 at ambient temperature.
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4. Conclusion

A (3,9)-connected Cd-triazolate framework constructed from trinuclear clusters has
been synthesized and characterized. High-connected MOFs based on polynuclear
metal–1,2,4-triazolate motifs continue to be investigated in our lab.
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